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Abstract

Asymptotic analysis of boundary layer separation in the limit of large Reynolds number Re!1 has shown

that in a number of cases which are of importance from a practical point of view solutions of the resulting interaction

equations describing two-dimensional (2-D) steady flows exist up to a limiting value Gc of the relevant controlling

parameter G only while two branches of solutions exist in a regime GoGc. The present study aims at a better

understanding of near critical flows jG� Gcj ! 0 and in particular the changes of the flow behaviour associated with

the passage of G through Gc.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent developments in the construction of airfoils and rotorblades are characterized by an increasing

interest in the application of so-called smart structures for active flow control. These are characterized by

an interplay of sensors, actuators, real-time controlling data processing systems and the use of new materials

e.g. shape alloys with the aim to increase manoeuvrability, reduce drag and radiated sound. The optimal use

of such devices obviously requires a detailed insight into the flow phenomena to be controlled and in particular

their sensitivity to external disturbances. In this connection locally separated boundary layer flows are of special

interest.

Asymptotic analysis of high Reynolds number flows Re!1 has shown that there exist at least two different routes

leading to the formation of a separated flow region inside an otherwise attached laminar boundary layer. Firstly, the

presence of an imposed adverse pressure gradient acting over a distance of order one on the typical boundary layer

length scale may cause the wall shear to decrease and finally become negative over a bounded distance before it recovers

again. Examples of this so-called marginal separation are provided by the leading edge separation on slender airfoilsat

incidence, flow separation associated with the deflection of wall jets and flow separation in channels enforced by

suction. Secondly, a firmly attached laminar boundary layer may be forced to separate due to the presence of a large

adverse pressure gradient acting over a short distance caused, for example, by a surface mounted obstacle or the Kutta

condition near the trailing edge of a slender airfoil.
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Although these scenarios ultimately resulting in the formation of separated flow differ vastly in detail they,

nevertheless, share a number of common features. Most important, it is found that a uniformly valid description of the

flow behaviour close to separation requires the investigation of three layers or decks having substantially different

properties. Viscosity plays a significant role inside a thin sublayer of the oncoming boundary layer (the lower deck) only

while the dynamics of the flow further away from the wall is predominantly inviscid. The main portion of the boundary

layer (main deck) primarily acts to transfer the displacement effects of the low speed flow inside the lower deck to the

region outside the boundary layer (upper deck) and to transfer the resulting pressure response unchanged to the near

wall region. Thereby a strong interaction mechanism between the inviscid external flow and the viscous wall layer is set

up which allows—in contrast to classical boundary layer theory—the correct description of locally separated flows.

While the leading order upper and main deck problems can be solved analytically, the study of the flow behaviour inside

the viscous wall layer requires a numerical treatment in general. Specifically, for the first route it is found that the

essential features of the lower deck region associated with marginally separated flows are captured by the integro-

differential equation

A2 � x2 þ G ¼ � l
Z x

�1

1ffiffiffiffiffiffiffiffiffiffiffi
x� x
p

qPðx; z; tÞ
qx

þ

Z x

�1
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qz2

dz
� �
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� g
Z x

�1
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ðx� xÞ1=4
qðA� hÞ

qt
dx� k

Z x

�1

vw

ðx� xÞ1=4
dx, (1)

where Aðx; z; tÞ and Pðx; z; tÞ denote the (negative) perturbation displacement thickness and the pressure while, the

parameter G represents a measure of the angle of incidence, the turning angle and the suction rate, respectively, e.g.

Braun and Kluwick (2004). Furthermore, x, z and t denote Cartesian coordinates in the streamwise and spanwise

directions and the time while l, g, and k are positive constants. All quantities are suitably non-dimensionalized and

scaled. Finally, hðx; z; tÞ and vwðx; z; tÞ account for the effects of controlling devices such as surface mounted obstacles

and suction stripes.

In contrast, if boundary layer separation is approached along route 2 then the boundary layer equations in

incompressible form
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together with the matching and boundary conditions

x!�1 : u! y; y ¼ 0 : u ¼ w ¼ 0; v ¼ vw,

y!1 : u! yþ A� h; w!
Bðx; z; tÞ

y
; B ¼ �

Z x

�1

qP

qz
dx (3)

have to be solved. Here u, v, w are the velocity components in x, y, z directions where y measures the distance from the

solid wall. To close the problems (1) and (2), (3) a relationship P ¼ F ðAÞ between A and the induced pressure P is

required which is problem specific. Here we focus on incompressible flows where

P ¼ �
1

2p

Z 1
�1

Z 1
�1

qðA� hÞðx; z; tÞ=qxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðz� zÞ2

q dxdz. (4)

Despite the fact that the form of the interaction law P ¼ F ðAÞ depends on the specific problem under consideration,

marginally separated flows exhibit a number of properties which appear to be universal. Most important, in all known

cases of marginal separation it is found that two-dimensional (2-D) steady state solutions exist up to a critical value Gc

of G only and that inside a range of values GoGc the problem is non-unique and admits two branches of solutions. As a

specific example, Fig. 1(a) displays Að0Þ versus G for uncontrolled incompressible flow h ¼ vw ¼ 0 past the leading edge

of a slender airfoil at incidence first studied by Ruban (1981) and independently by Stewartson et al. (1982) where

Gc � 2:66. Interestingly, similar phenomena are known to occur also in situations where a fully attached boundary layer

separates due to rapid changes of the boundary conditions, e.g. subsonic trailing edge flow (Korolev, 1990), supersonic

flow past flared cylinders (Gittler and Kluwick, 1987).
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Fig. 1. (a) Fundamental curve of marginal separation; dashed line: local solution of classical boundary layer theory (asymptote for

G!�1), dotted line: parabola approximation near the bifurcation point, see Section 2.1. (b) Instantaneous contours of the span-

wise vorticity component oz ¼ qv=qx� qu=qy (Alam and Sandham, 2000). L-vortex structures within the time mean separated region

are associated with the generation of moving singularities (white line) immediately after blow-up events.
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The nonexistence of steady 2-D solutions to Eqs. (1) or (2), (3) supplemented with the interaction relationship

P ¼ F ðAÞ if the relevant controlling parameter exceeds a critical value raises a number of questions concerning the

changes of the flow behaviour associated with its transition from subcritical to supercritical values, e.g. Braun and

Kluwick (2004). Their answer requires the investigation of unsteady, 3-D effects which poses an extremely

difficult numerical task. To the authors knowledge it has been attacked so far for marginally separating flows only

where Smith (1982), Ryzhov and Smith (1984), Elliott and Smith (1987) noted that the evolution of unsteady 2-D

disturbances above Gc inevitably leads to the formation of finite time singularities. Probably the most detailed

calculations based on the Navier–Stokes equations have been carried out by Alam and Sandham (2000) for the

specific case of a channel flow designed such that boundary layer separation on the lower wall is enforced by the

pressure increase resulting from suction at the upper wall. The results indicate that the flow inside the separation bubble

becomes increasingly sensitive to disturbances as the suction rate increases ultimately leading to bubble bursting

and, if the suction rate is sufficiently high, to repeated bubble bursts in the form of self-sustained oscillations. Also, it is

found that a transition from laminar to turbulent flow then occurs near and downstream of reattachment which is

characterized, among others, by the formation of L-type vortices, Fig. 1(b), which is also supported by experimental

evidence. Obviously, one then is confronted with the question if and how the singularities predicted by the asymptotic

theories for Re!1 are related to flow structures for large but finite Reynolds number and how much of the dynamics

emerging from Navier–Stokes calculations can be captured by considering truly unsteady, 3-D effects described

by (1) or (2), (3).
2. Bifurcation analysis of near critical flows

2.1. Route 1 towards separation

As noted by Braun and Kluwick (2004) the treatment of marginally separated flows simplifies considerably if G differs

only slightly from Gc or, more precisely, by focussing on the limit � ¼ jG� Gcj
1=4 ! 0. Appropriate expansions of A, h,

and vw are then

½A; h; vw� ¼ ½Ac; h1; vw1�ðxÞ þ �
2½a1; 0; 0�ðx; z̄; t̄Þ þ �

4½a2; h2; vw2�ðx; z̄; t̄Þ þ � � � . (5)

Here z̄ ¼ �z, t̄ ¼ �2t and the subscript ‘c’ refers to steady 2-D critical flow conditions. Introducing the abbreviations

I . ¼ l
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x
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, (6)

substitution of expansions (5) into (1) and (4) yields ð2Ac � IÞa1 ¼ 0. Consequently, a1 ¼ bðxÞ cðz̄; t̄Þ where bðxÞ denotes

the right eigenfunction of the singular operator ð2Ac � IÞ: ð2Ac � IÞb ¼ 0. Solutions of the equation for a2 exist only if
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Fig. 2. (a) Near critical marginally separated flows (h1 ¼ vw1 ¼ 0): (negative) perturbation displacement thickness AcðxÞ, right and

left eigenfunctions bðxÞ and nðxÞ. (b) Non-uniqueness of the planar ramp flow: bubble length lb versus ramp angle a for r ¼ 0:1 and

vw1 ¼ 0: ac � �5:926 (Zametaev, private communication).
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the yet unknown ‘shape’ function cðz̄; t̄Þ satisfies the evolution equation

qc

qt̄
� n

q2c

qz̄2
þ mc2 � sgnðG� GcÞd ¼ ḡ. (7)

The constants n, m, d and the function ḡ which accounts for the effects of controlling devices are uniquely defined in

terms of bðxÞ and the left eigenfunction nðxÞ: ð2Ac � IÞ�n ¼ 0. Here ð2Ac � IÞ� denotes the adjoint of ð2Ac � IÞ. Using

the notation hn; qi ¼
R1
�1

nqdx one obtains n ¼ hn; Jbi=ð2hn;KbiÞ � 3:0, m ¼ hn; b2i=hn;Kbi � 2:07, d ¼ hn; 1i=hn;Kbi �

1:60, and ḡ ¼ �ðghn; Ih2i þ khn;Kvw2iÞ=ðghn;KbiÞ. Numerical results for AcðxÞ, bðxÞ and nðxÞ with h1 ¼ vw1 ¼ 0 are

displayed in Fig. 2(a). If GoGc stationary points of (7) satisfy c ¼ �cs, cs ¼
ffiffiffiffiffiffiffiffi
d=m

p
and correspond to upper and

lower branch solutions for below critical flow conditions, Fig. 1. Finally, by applying the transformation

cðz̄; t̄Þ þ cs ¼ 2cs uðz; tÞ, z̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ð2mcsÞ

p
z, t̄ ¼ t=ð2mcsÞ, g ¼ ḡ=ð4dÞ Eq. (7) assumes the parameter free form

ut � uzz ¼ u� u2 �YðG� GcÞ=2þ gðz; tÞ, (8)

known as the forced Fisher–Kolmogoroff–Petrovsky–Piscounoff (FKPP) equation, e.g. Fisher (1937). Here YðsÞ
denotes the Heaviside function, Y ¼ 0 for so0 and Y ¼ 1 for s40.

2.2. Route 2 towards separation

The main ideas associated with the bifurcation analysis of marginally separated flows carry over unchanged although

the details are considerably more complicated. To be specific, we consider the case of incompressible flow past an

expansion ramp with ramp angle a and slightly rounded corner h1ðxÞ ¼ aðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2
p

Þ, r51.

Generalizing Eq. (5) we now expand as

½u; v� ¼ ½uc; vc�ðx; yÞ þ �
2½u1; v1�ðx; y; z̄; t̄Þ þ �

4½u2; v2�ðx; y; z̄; t̄Þ þ � � � ,

½P;A� ¼ ½Pc;Ac�ðxÞ þ �
2½P1;A1�ðx; z̄; t̄Þ þ �

4½P2;A2�ðx; z̄; t̄Þ þ � � � ,

w ¼ �3w1ðx; y; z̄; t̄Þ þ . . . ; B ¼ �3B1ðx; z̄; t̄Þ þ � � � ,

½h; vw� ¼ ½h1; vw1�ðxÞ þ �
4½h2; vw2�ðx; z̄; t̄Þ þ � � � , (9)

where � ¼ ja� acj
1=4 and as before z̄ ¼ �z, t̄ ¼ �2t. Steady 2-D flow fields have been computed first by Korolev (1992)

for r ¼ 0 who found that numerical solutions cannot be obtained for a4ac while two branches of solutions exist for

0XaXac, Fig. 2(b). Similar to marginally separated flows deviations from the critical 2-D steady state but now

characterized by the perturbations of the two velocity components u, v and the perturbation displacement function �A

and expressed in terms of the vector ~rT
1 ¼ ðu1; v1;A1Þ can be written as ~r1ðx; y; z̄; t̄Þ ¼ cðz̄; t̄Þ~r ðx; yÞ. Here ~rT

ðx; yÞ ¼
ður; vr;ArÞ represents the right eigenvector of a singular operator matrix M which depends on the unperturbed

flow quantities only. As before, the ‘shape’ function cðz̄; t̄Þ remains arbitrary at this level of approximation and is

determined by the requirement that solutions for the higher order approximations u2, v2, A2 exist. Introducing the left
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eigenvector ~l
T
ðx; yÞ ¼ ðm; n; qÞ of M the resulting solvability condition assumes the form

qc

qt̄

Z
D

mur dDþ c2
Z

D

mðururx þ vruryÞdDþ
q2c

qz̄2

Z
D

nwrdD

� sgnða� acÞ

Z
D

m

p
d
1

�1

h2xx

x� x
dx

� �
dD ¼

Z 1
�1

n0vw2 dx, (10)

which is again recognized as an equation of Fisher type. The quantity wr accounts for cross flow effects via the

relationship w1 ¼ wrðx; yÞqc=qz̄ and is obtained as the solution of the z-momentum equation linearized about the critical

state. Numerical work in progress (Szeywerth, private communication) indicates that the problems for the right and left

eigenvectors have a unique solution and that the integrals entering (10) exist which, therefore, can transformed into its

canonical form (8) which will be taken as the basis for the following discussion.
3. FKPP equation

Equations of Fisher’s type (heat equations with nonlinear source terms) are known from nonlinear wave

propagation phenomena in gene populations, reaction–diffusion and heat conduction processes. Its appearance

in the context of near critical flow phenomena forms one of the key observations of the present study. In

contrast to previous applications where uðz; tÞ is limited to positive values within the range ½0; 1� or ½0;1Þ no
restrictions on the magnitude and sign of u exist in cases which are of interest here. As a consequence, the associated

dynamics becomes considerably more complicated and only first steps towards a full understanding have been

taken.

3.1. The 2-D unsteady flows

Two-dimensional unsteady flows where further analytical progress is possible provide a natural starting point for a

discussion of flow phenomena described by (8). In the case of unforced flow ḡ ¼ 0 it reduces to Bernoulli’s equation

which can be solved in closed form for both sub- and supercritical flows

GoGc : uðtÞ ¼
u0 þ u0 tanh½ðt� t0Þ=2�

1þ ð2u0 � 1Þ tanh½ðt� t0Þ=2�
, (11)

G4Gc : uðtÞ ¼
u0 þ ðu0 � 1Þ tan½ðt� t0Þ=2�

1þ ð2u0 � 1Þ tan½ðt� t0Þ=2�
. (12)

Here u0 ¼ uðt0Þ denotes the value of u imposed at time t ¼ t0. According to (11) the steady upper branch solution us ¼ 1

is approached for initial conditions u040. In contrast, for u0o0 i.e. for u0 below the steady lower branch solution

us ¼ 0, finite time blow-up occurs at the blow-up time t� ¼ t0 þ 2 artanh½1=ð1� 2u0Þ�. Still, however, the steady upper

branch solution us ¼ 1 is approached in the limit t!1. No such steady state exists for supercritical flow where

Eq. (12) predicts periodic blow-up, i.e. self-sustained oscillations of the separation bubble.

The above interpretation of solutions to Eq. (8) is watertight if u remains bounded for all times tXt0 but hinges on

tacit assumptions if finite time blow-up occurs, namely (i) that uðtÞ can be extended beyond t� and (ii) that the singular

behaviour of u for t� t� ! 0� causes a singular response of u for t� t� ! 0þ. Although no rigorous proof of (i) and

(ii) exists at present, their validity appears to be supported by available numerical data and physical considerations. For

example, as mentioned before, DNS calculations for marginally separated channel flows carried out by Alam and

Sandham (2000) predict that self-sustained bubble oscillations occur if the relative suction rate a ¼ _Vs= _V1 where
_V1 and _Vs, respectively, denote the volume fluxes at the channel entry and the suction strip is sufficiently large.

Specifically, such oscillations were observed in the range a ¼ 0:220:25 which is larger than but of the same order of

magnitude as the critical suction rate ac � 0:09 predicted by the asymptotic approach which is encouraging. Also, if a

singular behaviour of uðtÞ for t� t� ! 0� is accepted, conservation of mass immediately implies a related singular

behaviour for t� t� ! 0þ which in turn ‘selects’ unique solutions (11), (12) for arbitrary values u0.

Therefore, assumptions (i) and (ii) will be adopted in the following considerations dealing with more general

situations as for example unsteady 2-D forced flow where gðtÞ is taken to be purely harmonic gðtÞ ¼ aYðtÞ sin ot.

Introduction of the transformation u! R: uðtÞ ¼ ½1þ oR0ðt̄Þ=Rðt̄Þ�=2 where t̄ ¼ ot=2� p=4 then leads to the canonical

form of Mathieu’s equation

R00 þ ½p� 2q cosð2t̄Þ�R ¼ 0 (13)
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with p ¼ �1=o2 and q ¼ 2a=o2. According to the definition of uðtÞ, blow-up solutions of (8) are associated with zeros of

solutions to (13) and multiple blow-up will be associated with periodic solutions of (13). For p ¼ a0ðq0Þ this equation

has an even 2p periodic solution with no zeros R ¼ c e0ðt̄; q0Þ where c is a normalization constant. Using the

transformation R ¼ c e0ðt̄; q0Þ wðt̄Þ application of the theorem of Leighton (1949) to the resulting equation for w shows

that repetitive blow-up occurs for GoGc if the forcing amplitude a4ac ¼ q0o
2=2 and is inevitable if G4Gc. Evaluation

of the relationship ac ¼ acðoÞ as displayed in Fig. 3(a) together with its limiting form ac�o=
ffiffiffi
2
p

as o!1 shows that

the danger of bubble bursting in subcritical flows decreases with increasing values of o in agreement with experimental

observations (Ruban, private communication). Numerical solutions of (8) for GoGc,o ¼ 2 and two different values of

a are depicted in Fig. 3(b) and seen to be in complete agreement with the prediction following from the analytical result

q0 � 0:7268, ac � 1:45216.

3.2. Further analytical solutions of the FKPP equation

Closed form solutions of (8) without forcing can be obtained also in the case of steady 3-D flow where it reduces to

the integrated form of the Korteweg-de Vries equation if GoGc. Consequently, bounded solutions varying periodically

with z are given in terms of the Jacobian elliptic functions cn ðsjmÞ and the integration constant j 2 ½0; p=3�; Fig. 4(a):

uðzÞ ¼ sin2
j
2

� �
þ

ffiffiffi
3
p

sin j
1

2
� cn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos jþ

sin jffiffiffi
3
p

s
z

2

					 2 tan jffiffiffi
3
p
þ tan j

 !" #
. (14)

The homoclinic orbit uðzÞ ¼ 1� ð3=2Þ cosh�2ðz=2Þ is given by the limit j ¼ p=3, while j! 0, which corresponds to a

linearization about the unperturbed planar steady state u ¼ 0, yields uðzÞ� � ð
ffiffiffi
3
p

j=2Þ cos zþ Oðj2Þ. An additional

family of solutions which vary periodically with z is obtained if, as in the case of 2-D unsteady flow, the presence of

singularities is accepted. It exists for subcritical and, interestingly, also for supercritical flow conditions and can be

expressed in terms of the Weierstrass elliptic function uðzÞ ¼ 6}ðz; sgnðGc � GÞ=12; g3Þ þ 1=2, where the invariant g3
remains arbitrary. For GoGc, the distance between consecutive singularities (streak spacing) varies between 0 and 1

and a non-periodic solution is found in the limit g3 ¼ �1=216. In contrast solutions for G4Gc, Fig. 4(b), are always

periodic as they cannot decay to a 2-D steady state and there exists an upper bound Dz � 10:2909 for the spacing

of streaks.

Finally, we note a last class of exact solutions to the unforced version of (8) describing travelling wave solutions: for

details the reader is referred to Braun and Kluwick (2004).

3.3. Blow-up in unsteady 3-D flow

For 2-D unsteady flow the singular behaviour of u near blow-up is readily obtained from the exact solution (11), (12):

u�1=ðt� t�Þ as jt� t�j ! 0. In the case of 3-D flow, however, the analysis of the flow structure is considerably more

complex. Work carried out by Hocking et al. (1972) in a different context suggests the ansatz (Braun and Kluwick,
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Fig. 3. Planar forced flow with gðtÞ ¼ aYðtÞ sinð2tÞ: (a) critical amplitude acðoÞ; acð0Þ ¼ 1=4, acðo!1Þ�o=
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2
p
þ � � � (dashed line).

(b) Numerical solutions of (8); repeated blow-up occurs for a4ac � 1:45216.
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Fig. 5. Local blow-up behaviour of solutions to Fisher’s equation (8) (schematic); for t40 the solution is shown in the right half plane

only.
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2004), uðz; tÞ�f ðZ; tÞ=tþ � � �, Z ¼ z=
ffiffiffiffiffiffiffi
jtjt
p

, t ¼ � ln jtj as t! 0 (where the blow-up point is assumed at t� ¼ 0 and z� ¼ 0

without loss of generality) and results in

f þ
Z
2

f Z � f 2
¼

Z
2t

f Z � f t �
sgnðtÞ

t
f ZZ � sgnðtÞ e�tf þ e�2t

YðG� GcÞ

2
� g

� �
. (15)

Expansion of f ðZ; tÞ for t!1 requires the introduction of logarithmic terms: f ðZ; tÞ�f 0ðZÞ þ g1ðZÞ ln t=
tþ f 1ðZÞ=tþ Oðln2t=t2Þ. Near blow-up exponentially small terms in (15) can be neglected to the order considered

here which in turn allows for an analytical treatment and, furthermore, reveals the important symmetry property

f ðZ; tÞ ! f ðiZ; tÞ if t!�t indicating that, similar to 2-D flows, also z-dependent solutions of (8) can be extended

beyond blow-up and that the singular behaviour for t! 0� forces a singular behaviour for t! 0þ:

f 	0 ¼
8

8� Z2
; g	1 ¼ 	

10Z2

ð8� Z2Þ2
; f 	1 ¼

16	 c1Z2 	 8Z2 ln j8� Z2j

ð8� Z2Þ2
. (16)

Here c1 is an arbitrary constant depending on initial conditions and the upper/lower sign corresponds to t! 0	.

According to (16) the focussing of u as the blow-up time is approached leads to the generation of a pair of vortices

after blow-up moving along the paths ZsðtÞ ¼ zsðtÞ=
ffiffiffiffi
tt
p
¼ �

ffiffiffi
8
p
þ � � �, Fig. 5, which is thought to provide a mechanism

for the appearance of coherent structures (L-vortices, see Fig. 1(b)) in transitional separation bubbles (Braun and

Kluwick, 2004).
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Fig. 6. Evolution to blow-up with initial condition uðz; 0Þ ¼ 1 for the applied forcing (a) gðz; tÞ ¼ 30 sinð2tÞe�100z2 . Consecutive time

steps: t ¼ 3:75, 3.752, 3.75349998, 3.7541998; estimated blow-up time t� � 3:75438944, blow-up profile f �0 , (16). (b) gðz; tÞ ¼
30 sinð2tÞðe�100ðz�RÞ2 þ e�100ðzþRÞ2 Þ (flat blow-up structure), R ¼ 1:92969. Consecutive time steps: t ¼ 4:180145þ iDt, i ¼ 0, 2, 4, 6, 8, 10,

15; Dt ¼ 10�7.
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3.4. Numerical prediction of blow-up: influence of forcing

The forced FKPP equation (8) is one of many partial differential equations which have solutions that blow-up in a

finite time. Near the (isolated) blow-up point the solution develops a singular spike with both decreasing width and

increasing height. To compute the solutions of blow-up accurately it is essential to employ an adaptive method which

can then move points into the blow-up region. The adaptive meshing algorithm implemented here is based on the

moving mesh methods of Huang et al. (1994a, b). An example of blow-up is shown in Fig. 6(a) where we see the

evolution to blow-up for the applied forcing gðz; tÞ ¼ 30 sinð2tÞ e�100z2 with initial condition uðz; 0Þ ¼ 1. The scaling

analysis above suggests that the evolution presented in Fig. 6(a) provides a typical structure that is independent of the

precise forcing imposed in the neighbourhood of blow-up. The question is then: how are variations in the applied

forcing reflected in blow-up formation?The formal asymptotics of Galaktionov et al. (1991) indicate the possibility of

an alternative ‘flatter’ asymptotic structure near blow-up described by the Hermite polynomials HmðyÞ, y ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffi
t� � t
p

with mX4 and m even. We are able to generate results suggestive of this flatter blow-up structure through coalescing

spike structures generated by a two-peak forcing of the form gðz; tÞ ¼ 30 sinð2tÞðe�100ðz�RÞ2 þ e�100ðzþRÞ2 Þ. For R large

there is blow-up at two points and R small at one point. However for R ¼ R� � 1:92969 the blow-up at z ¼ 0 is

associated with the coalescing of two maxima. This blow-up pattern is seen in Fig. 6(b). More complicated and flatter

blow-up patterns can also be generated by inclusion of additional peaks in the forcing and appropriate tuning of the

peak separation distance.
4. Conclusions

In the present study it has been shown that near critical flow phenomena are governed by the same evolution

equation of Fisher’s type for both routes leading to the separation of high Reynolds number laminar flows analyzed in

the past. Although this equation has been investigated over 70 years, the existing literature contains relatively little

material which is of relevance in the present context. This is due to the fact that in most investigations carried out to

date uðz; tÞ is taken to be in the interval ½0; 1� or ½0;1�, which is sufficient if one stays within its classical field of

applications, e.g. population dynamics, but is too restrictive if it is used to study near critical separated flows. Here u

may vary in the whole range ð�1;1Þ which significantly increases the richness of solutions. First steps towards the

understanding of the associated new phenomena have been taken by Braun and Kluwick (2004, 2005). Here a number

of new solutions have been presented which are of interest both in the context of structure formation and flow control.

In addition to analytical considerations a new numerical scheme allowing the study of general unsteady, z-dependent

flows and specially designed to capture the phenomenon of bubble bursting in detail has been presented. Results

obtained so far support existing analytical evidence that the flow properties for jt� t�j ! 0 where t� denotes the

bursting time are universal, i.e. independent of the specific form of the adopted forcing term but work in progress
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also shows that the actual value of t� is very sensitive to small changes of the forcing and thus can be controlled

very effectively.
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